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CHINESE REMAINDER 
AND INTERPOLATION ALGORITHMS 

by 

John D. Lipson 

ABSTRACT 

This paper is concerned with mathematical, coinputational, and 
historical aspects of the Chinese Remainder and Interpolation 
Theorems of number theory and numerical analysis, with a view 
to their application to symbolic computation. 

1. INTRODUCTION 

The great usefulness of modular arithmetic and interpolation methods 

as tools for exact and symbolic computation is becoming increasingly recog­

nized (e.g. cf- [3, 5s, 14, 18])., The Chinese Remainder and Interpolation 

Theorems from number theory and numerical analysis play a key role in these 

methods; the Chinese Remainder Theorem allows for the reconstruction of an 

integer from its residues with respect to an appropriate number of moduli, 

and interpolation formulae allow for the reconstruction of a polynomial 

from an appropriate number of sample values 

This paper attempts a study in depth of the mathematical and algor­

ithmic aspects of the Chinese Remainder and Interpolation Theorems, with 

a view to their application to problems involving computation with (large) 

integers and/or polynomials with integral coefficients. 

In Sec. 2, a Chinese Remainder Theorem is established in the suit­

ably abstract setting of an arbitrary commutative ring. The special 

feature of the proof of this theorem is the identification of two Chinese 

Remainder Formulas, called "Lagrangian" and "Newtonian," having distinct 

computational properties. 

In Sec. 3, various algorithms based on the Chinese Remainder For­

mulas of Sec. 2 are derived in the more specialized algebraic setting of 

abstract Euclidean domains, A generalization (to Euclidean domains) of the 



divided-differences associated with Newton's (polynomial) Interpolation 

Formula is also given. 

In Sec. 4, the algebraic setting is further specialized to the domains 

of primary importance for symbolic computation: the integers Ẑ  and poly­

nomials F[x] with coefficients in a field F. Examples are given to illus­

trate and contrast the various algorithms in both of these cases. 

Sec. 5 is devoted to the analysis and appraisal of the various Chinese 

Remainder Algorithms, in order to answer the important question "which one 

should be used in practice?" 

In Sec. 6, an attempt is made to sunraiarize the interesting and some­

what complicated history of the Chinese Remainder and Interpolation al­

gorithms studied in this paper, updating previous accounts by the inclusion 

of material relevant to symbolic computation. 



2. AN ABSTRACT CHINESE REMAINDER THEOREM 

The algebraic setting for this section of the paper is as follows. 

Let K be a commutative ring with unit element 1, and M = {M ,M.,...,M } a 

finite set of ideals in K. A special property of the set of ideals M that 

we shall need is given by the following 

Definition. The set M = JM ,M ,..,,M } of distinct ideals in a commu­

tative ring K is called a pair-wise spanning (PS) system of ideals if 

M^ + M^ = k (Vi?4k). (2.1) 

As an immediate consequence of this definition we have the following 

Lemma 2.1. If M is a PS system of ideals in K, then for any pair of 

ideals M., M^ z M (î 'k) there exist n'*̂ ^ c M., n^^^ e M^ such that 

(k) (i) _ , 
n^ \ •'- • (2.2) 

Anticipating future development, it shall be convenient to assume a fac-
(k) 

torization for the element n. of the form 
1 

„(k) _ Jk) (k) . . 
n 1 i ' (2.3) 

(k) (k) where s E K, m^ e M.. Note that there is no loss of generality in 
(k) 

assuming such a factorization, for if n. E M, we can always take 

ŝ ''̂  = 1 and m*-*̂^ = n^'^^ Conversely, if s ̂'̂^ E K and m̂ *̂ ^ E M, then 
i i i •" 1 1 i 
(k) (k) 

s^ m e M. by the defining properties for an ideal. 

Theorem 2.2 (Abstract Chinese Remainder Theorem). Let K be a commu­

tative ring, and M = (M ,M ,,..,M } a PS system of ideals in K. Then the 

map 

n 
(f: u + n M^ ^ (U+MQ,...,U+M^) (2.4) 



is an isomorphism of rings 

K/nM. = n K/M. 

Proof. Consider the following mapping diagram 

with (() as in (2.4), p the natural map from K to its quotient-ring K/nM., 

and li; K -»• n K/M defined by u ->• (u+M„,. .. ,u+M ). It is easily verified 
ĵ  1 -̂  0 n 

that i() is a morphism with kernel nM. . It follows by the Isomorphism 
i -•-

Theorem for Rings that (i is an isomorphism from K/nM. to \li(.K.) . 
i ••• 

Still to be proved is that ii is surjective (and hence that (fi is an 

isomorphism from K/nM. to II K/M.). Thus, for arbitrary (u.+M„,..., 
ĵ  1 i 1 0 0 

u +M ) £ n K/M we must establish u E K such that I/J(U) = (u +M ,. .., 
n n 2̂  1 0 U 

u +M ). An equivalent but more intuitive statement of the same problem 

is given by the following. 

The Chinese Remainder Problem. For arbitrary u E K, find a solu­

tion to the system of congruences 

u. (mod M.) (i=0,l,...,n). (2.5) 

In the context of the ring of Integers Z_, finding a solution to the 

system of congruences (2.5) (where M. is some principal ideal (m ) and 

each u may be regarded as a remainder or residue when the (unknown) 

integer u is divided by m.) is the celebrated Chinese Remainder Problem 

Unless specified otherwise, indices are assumed to range over {0,l,...,n}. 
n n 

Thus n stands for n , II for n . 
i i=0 i i=0 



[16, pp. 57-64] of Number Theory (thus the name of Theorem 2.2 and the 

above problem), 

The main result of this section now follows, in the establishment of 

two "Chinese Remainder" formulas for determining a solution u to the system 

of congruences (2.5) under the conditions of Theorem 2.2; (i) a Lagrangian 

formula, and (ii) a Newtonian formula. The reason for this nomenclature 

will be evident when we consider these formulas in special cases. 

(i) Lagrangian Formula 

With s. 
(k) „(k) 

as in (2.3), let 

^k = n s. 
(k) 

M, 
n m 

(k) 

î k " l"k iî k 

Then the Lagrangian formula for u is 

(k=0,l,...,n). (2.6) 

= ^ "k^k 
k=0 " " 

(2.7) 

The validity of (2.7) is established by 

Theorem 2.3. u E u (mod M^). 

Proof. 
(k) 

From (2.6), each L is of the form a II m. , with a c K, 

.(k) m' ' e M.. Hence, by the defining properties 

L E n M , whence 
•̂  i?tk ^ 

of ah i d e a l , e a c h 

L, E 0 (mod M.) 
k 1 

( V i i t k ) . 

A l s o , 

L . = 
1 

" yi "̂ y 
i^k ^ K i^k ^ 

n s^'^^m,^''^ (mod M, ) 
i^'k ^ ^ 

n d - n ^ ' ' ^ (mod K^) 
ii^k 
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Now from (2.2) each n̂ *"̂  E M^, SO that 

L = 1 (mod M^) 

Thus we have shown that 

L, E (5., (mod M ) 
k ik 1 

and the statement of the theorem follows immediately. 

(ii) Newtonian Formula 

Again with s^^\ ^ as in (2.3), a sequence u °^u ,...,u " E K 

is defined recursively by 

j k ] __ jk-1] ^ V y , (2.8) 

where 

k i = o ^ 

a , = | ( u , - u " ^ - ^ l ) x ' n \ « | „ ^ • ''•''' 

Then the Newtonian formula for u is 

u = u'^^ = a„ + a m^^) + ... + a "n mf"^ . (2.10) 0 1 0 n . ̂  1 
1=0 

As for the Lagrangian formula, we must prove 

Theorem 2.4. u E u, (mod M^) 

Proof. By induction we show that 

u'*̂ ^ E u. (mod M.) (i=0,l,...,k). 

For k = 0 we have u E û , (mod M ) by (2.9). Assuming 

u'''"-̂ ^ E u. (mod M.) (i=0,l,...,k-l). 
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it follows that 

..tk-1] 
""" "k^k = "i ^^°^ "i^ (i=0,l,...,k-l) 

k-1 k-1 
for any a, E K, R E n m,_ , . The particular choice a. = a . R = IT ,.(k) 

gives 

k ^ " \ - l ' "^^^ particular choice a = a , B = n m 
i=0 k k k j_n i 

i=0 

.^^^ = y-'^ + a, V m« 
^ i=0 ^ 

k-1 ,, , k-1 
= u['̂ -l] + |(u-ut'^-lJ)x V s W l ^ n n,W 

^ i=0 ^ "k i=0 ^ 

. u"̂ -̂ l + ^ u . - J ' - y X V s('̂ >m('̂ > (mod M,) 
k i=0 ^ ^ T̂  

'̂ "̂  .(k) (k) '̂ -1 
Now n s m = n (1-n, '̂) E 1 (mod M, ) because from (2.2) n,*- •' E M , 

i=0 ^ 1 i=0 k k k 
whence from the above 

ut"̂ ] E J^-^-i + ( u y ^ - ^ h X 1 (mod M^) 

= u, (mod M^) 

[k] 
Thus u E u^ (mod M^) (i=0,l,...,k), which completes the proof by induc­
tion. For k = n we obtain 

u = u'"^ E u^ (mod n^) (l=0,l,...,n), 

whith completes the proof of the theorem. 

Referring to the proof of Theorem 2.2, either the Lagrangian or New­

tonian Chinese Remainder Formula establishes that I(J: K -<• IT K/M is sur-
i i 

jective and hence that (fi of (2.4) is an isomorphism of rings 

K/nM. = n K/M.. This completes the proof of Theorem 2.2. 
i 1 1 1 

As for uniqueness properties of a solution u to the system of congru­

ences (2.5), we have by the Isomorphism Theorem for Rings that 

i()(u) = i|j(u') =̂  u E u' (mod Ker ijj) 
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But, as already noted, 41 has kernel nM., so that a solution to (2.5) is 
i ^ 

unique modulo the ideal nM.. 
i ^ 

Thus, both the Lagrangian and Newtonian Chinese Remainder Formulas 

must yield essentially the same solution to a system of congruences. How­

ever, algorithms based on these formulas have quite different computational 

properties with respect to time and storage requirements. Our goal now is 

the derivation and analysis of such algorithms in algebraic settings rele­

vant to symbolic computation. 
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3. CHINESE REMAINDER ALGORITHMS IN ABSTRACT EUCLIDEAN DOMAINS 

In this section we derive algorithms based on the Lagrangian and New­

tonian Chinese Remainder Formulas (2.7) and (2.10) for solving the Chinese 

Remainder Problem in a Euclidean domain D. Specifically, this is the 

problem of computing the solution u to a system of congruences 

u E uĵ  (mod m^) (i=0,l n), (3.1) 

with arbitrary u. E D and moduli m pairwise relatively prime, i.e., 

(m^,m^) = 1 ¥i54k. 

The Chinese Remainder Theorem and Formulas of Sec. 2 apply to the 

above system of congruences by virtue of 

Lemma 3.1. The principal ideals (m„),(m,),...,(m ) constitute a PS 
u 1 n 

system of ideals in D. 

This is an immediate consequence of 

Euclid's Lemma. If (m.,m ) = 1 then the equation 

xm. + yni = 1 (3.2) 

has a solution x = s , y = s^^ in D (cf. (2.2) and (2.3)). Furthermore, 

the solution s , s^ is computable by the "extended" Euclidean algorithm 

[11, p. 302]. For future reference we note from (3.2) that 

ŝ '̂ '̂m̂  E 1 (mod m^) (3.3) 

(and, symmetrically, s nv E 1 (mod m )). 

According to the uniqueness considerations discussed at the end of 

Sec. 2, a solution to the system of congruences (3.1) is unique only up to 

the ideal n(mj). Now by assumption the moduli m. are pairwise relatively 
i i 1 

prime, so that n(m ) is the (principal) ideal (Um.). Thus a solution u to 
i i i ̂  

(3.1) is unique modulo the product of the moduli m.. 

(VL) 
With s as above, (2.6 - 2.7) become 
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Lagrangian Chinese Remainder Formula in Euclidean Domains• 

L, = I n s.̂ '̂ l̂ X n m^ (3.4) 
k iî k ^ % î k i 

with 

u = I u^L^ . (3.5) 
k 

Thus, the specialization to Euclidean domains admits a considerable slmpli-
(k) 

fication in the general Lagrangian Formula (2.6 - 2.7) in that the m^ •̂ 's 
(k) 

of that formula are now independent of k, with each m. = m^ . 
1 i 

Turning to the Newtonian case, (2.8 - 2.10) become 

Newtonian Chinese Remainder Formula in Euclidean Domains. 

k-1 

n 
i=0 

[k] [k-1] 
+ a^ n m^ , (3.6) 

where 

^0 = " = l"oLj, • (3.7) 

^.= l(u,-ut-^)x^n\f>|^^ , (3.7.) 

with the Newtonian Formula proper for u being 

[n] ^ "-1 
' = ̂ 0 "̂  V o + ••• + a^ n m. . (3.8) 

i=0 

As in the Lagrangian case, the simplification afforded by the 

specialization to Euclidean domains is that the m^*"^'s of (2.8 - 2.10) 

are now independent of k. 

It is convenient to regard the system of congruences (3.1) as specify­

ing the modular representation of the solution u (with respect to the 

moduli mg,m^,...,m^), which we denote by 

U = [Ug,U^,...,Uj . (3_gj 



15 

The modular representation [u. ,u..,... ,u ] determines u uniquely modulo Ilm̂ , 

as already noted. 

Similarly, the a 's of (3.3) can be regarded as specifying the New­

tonian representation of u (again with respect to m ,m ,.,.,m ), and we 

denote (3.3) by 

u = <a.,a,,...,a > . (3.10) 
0 1 n 

Thus, the problem of finding a solution to the system of congruences 

(3.1) by the Newtonian Formula can be regarded as one of conversion of 

representations—from the modular representation (3.9) to the Newtonian 

representation (3.10). 

We now investigate the computational details of the Newtonian Formula. 

From (3.6) and (3.7), we have 

-0 = l"0lm„ • "-̂ ^̂  

a,= |[u,-a„]xs(^>^ . (3.11-) 

•̂ -2 ^-^ (k), (3.11") 

gives 

-k = i t V ^ V ^ V - • -̂ k̂-l ̂fo "î "̂ '̂  i"o 'i A 

Applying Horner's polynomial evaluation to the term (...) in (3.11") 

â  = [û -((.. • ((Vl\-2+V2K-3+V3>\-4+- " -̂ V̂ Ô ^ 

k-1 ,^ N 
X n ŝ '̂ l̂ . (3.12) 

Thus the conversion u = [Ug,u^,...,u^] ̂  u = <ag,a^,...,a^> can be accom­

plished by the following algorithm, expressed as an Algol-like program. 

The constants 

c = I n s,̂*"̂ ! (k=1.2 n) (3.13) 
k 1=0 ^ "h. 



16 

are assumed available (precomputed) for use in the program. 

Algorithm Nl. (Conversion from modular to Newtonian representation in 

a Euclidean domain) 

begin 

0 \ 

for k := 1 step 1 until n do 

begin 

' == Vl = 
for i := k-2 step -1 until 0 d£ 

t := It X m. + a. 

A 

end 

end; 

Another computational variant of the Newtonian Formula is obtained by 

^'^ (k) 
distributing the product II Sj through the bracketed [ ] expression of 

1=0 ^ 
(3.11"), applying (3.3) and finally Horner's polynomial evaluation scheme 

to give 

\= l(--«(\-0>^r-V^r-2^^2'^----Vl><-\- (3.U) 

This leads to a second algorithm for carrying out the conversion 

u = [Ug,u^,...,uJ -u=<ag,a^,...,a^>. 



1? 

Algorithm N2. 

begin 

^0 == l"0lm„ •' 

for k := 1 step 1 until n do 

begin 

for i := 0 step 1 until k-1 d£ 

t := |(t-a.) X ŝ '̂ l̂ ; 
I 1 1 'm^ 

t 
k 

end 

end; 

Multiplied Differences in Euclidean domains. We now embellish the 

description of the above algorithm in introducing the notion of "multi­

plied differences." (As shall become evident, these multiplied differ­

ences generalize to arbitrary Euclidean domains the divided differences 

used in the construction of Newton's Interpolating Polynomial.) 

Relative to the system of congruences (3.1), the multiplied differ­

ences of orders 0,1 i (IMI) are defined by 

[m^] = |u| (0<̂ k£n), (3.15) 
K 

[mQ,mĵ ] = |([mĵ ] - [m^]) x s'^^'^ \ (llk<n) , (3.15') 

"V 
and, recursively, 

[mQ,m^,...,m._^,m^] 

= |([mQ,m^,...,m^_2,mj^] - [m^.m^,.. . ,m^_^]) x s^^^ | (3.15") 

(i£k<n). 

A 
Although the notation for multiplied differences is the same as that for 
the modular representation (3.9), it will always be clear from context 
which is intended. 
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These multiplied differences are arranged in a tdble of multiplied 

differences as follows, illustrated for n=3. 

Table 3.1. Table of Multiplied Differences 

[ 1 [ , ] [ . . . I f . . . ] 

[̂ ol 

[m̂ ]̂ [mg,m^] 

[m^] [m^.m^] [mg,m^,m2] 

[m^] [m^.m^] [m^.m^.m^] [mQ,m^,m2,m2] 

The relationship between multiplied differences and the values com­

puted by Algorithm N2 is given by 

Theorem 3,2. [m ,m ,,..,m. ,,m ] 

'(•••("V^O^S - P ^ i - V S ---Vl^^l-l'm^ 
5(k)_3 ),(k)_ .3(k)_ _^ . ( k ) , 
'0 ^1^ 1 ^2^^2 ••• ^i-l^^i-l' 

Setting i = k and comparing with (3,14) yields the immediate 

Corollary. [mQ,m^,. . , ,mĵ _̂ ,mĵ ] = â .̂ 

Proof. The proof of the theorem follows readily by induction on the 

order of the multiplied differences. For multiplied differences of order 

zero the theorem becomes [m ] = |u, | , which holds by (3,15), Now assume 

the theorem holds for multiplied differences of order i-1. Then by (3.15") 

we have 

[mQ,m^,...,m^_^,mj^] 

= |([mQ,m^,...,m^_2,mj^] - [mQ,m^ m^_^]) x ŝ *"̂  |^ . 
k 

Observing that the multiplied differences appearing on the r.h.s, are of 

order i-1, we apply the induction hypothesis to the first divided differ­

ence and the induction hypothesis along with (3.14) to the second divided 

difference, obtaining 
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['"o'"'i'-'->™k-i''\^ 

= !({((...((u,-a,)sj'^^-apsf>-....a,.,)sj::))} - (a,_,})sS| . 
k 

which completes the proof by induction of the theorem. 

Thus the above theorem identifies the k-th row of the table of multi­

plied differences with the partial results in the computation of a, accord­

ing to (3.14). Specifically, the auxiliary variable t in Algorithm N2 

successively takes on the values (for fixed k) 

^\^> ['"o'"k-'' ['"o''"l'"k-'' • • •' ̂ "O'^l'• • '''\-l'"'k-'• 

Thus Algorithm N2 computes the multiplied differences of Table 3.1 row by 

row but retains only the diagonal entries—these are the desired a 's in 

the Newtonian Chinese Remainder Formula. 

Yet a third computational variant of the Newtonian Formula is obtained 

directly from (3.6 - 3.7') and is carried out according to Algorithm N3 

below. As in Algorithm Nl, the constants c, of (3.13) are assumed avail­

able. In addition, it is assumed that the moduli products 

1=0 

are also precomputed 

k-1 
qj^ = n m^ (k=l,2,..,,n) (3.16) 

% 

Algorithm N3 

begin 

for k = 1 step 1 until n do 

begin 

V := |uL ; 

:= I (u, -v) X c, 
I ̂  k k'mj^ 

U := U + a X q^ 

end 

end; 
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[k] 
Thus Algorithm N3 computes the u 's of (3.6), with the variable U 

successively taking on the values u ,u ,..., and finally u , which 

is the desired solution according to (3.8). 

[k] 
On the other hand, Algorithms Nl and N2 do not compute these U 's 

but Instead compute only the coefficients a. ,a , ...,a of the Newtonian 
U 1 n 

representation (3.10) of the solution u. In order to obtain u explicitly 

(i.e., as an element in D instead of as a vector of coefficients a. in D) , 

Algorithms Nl and N2 must be followed by an evaluation of the expression 

(3.8), which on applying Horner's scheme becomes 

u = (...((â m̂ _̂  + V l)V2 + V2)---+ V^O + ̂ O" "-l^^ 
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4. CHINESE REMAINDER ALGORITHMS IN Ẑ  AND F[x] 

In this section we restrict our attention to the two Euclidean domains 

of principal computational Interest: the domain F[x] of polynomials over a 

field F with the Euclidean degree being defined as the (polynomial) degree, 

and the domain Z^ of integers with the Euclidean degree being the absolute 

value. 

In 2^, the integer Division Algorithm yields for any a,m E Ẑ  unique 

integers q,r e Ẑ  such that 

a = qm + r (0<̂ r<m) 

and we subsequently define 

(4.1) 

Analogously for F[x], the polynomial Division Algorithm yields for any 

a(x),m(x) E F[x] unique polynomials q(x),r(x) E F[X] such that 

a(x) = q(x)m(x) + r(x) (deg r(x) < deg m(x)) 

and we subsequently define 

la(x)| , . = r(x) . (4.2) 

' m(x) 

Thus, for apparent reasons related to efficiency of computation we 

have defined the modulo operators I I and I I , , to yield a result that 
' 'm m(x) 

is "small" in terms of Euclidean degree; |aj is the least non-negative 
integer in the ideal a + (m), |a(x)| , is the polynomial of least degree 

m\Xj 
in the ideal a(x) + (m(x)). 

Chinese Remainder Problem in Ẑ  and F[x] . In Ẑ  the Chinese Remainder 

Problem becomes: Find a solution u to the system of congruences 

u E u (mod m ) (1=0,1,...,n), (4.3) 
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where u„,u ,...,u E Z are arbitrary and the moduli m ,m ,...,m E Z are 
O l n — O l n — 

pairwise relatively prime. A solution u is unique modulo Ilm. , so it is 
i •"• 

convenient to impose the condition 0_<u<IIm. so that the solution to the 

system of congruences (4.3) is unique m Z^. As in (3.9), it is also con­

venient to consider (4.3) as specifying the modular representation 

u = [UQ,U^,...,U^] (4.4) 

of the (unknown) integer u (with respect to the moduli m„,m,,...,m ). 

0 1 n 

In F[x], the Interpolation Problem is as follows: construct a poly­

nomial of degree <n 

u(x) = sg + s^x+ ... + s^x" (4,5) 

which satisfies 

" S ^ = "i (i=0.1 n) (4.6) 

for arbitrary û .̂û .-.-.u E F and distinct x^,x, x E F. 

'•'• u 1 n 

This polynomial interpolation problem can be restated in the follow­

ing congruential terms: Given the moduli polynomials x-x (1=0,1 n) 

(which are clearly relatively prime if x̂ x̂ for i^j), find a solution 

u(x) to the system of congruences 

u(x) E u^ (mod x-x^) (i.0,1 n). (4.7) 

Thus we see that in F[x] the Interpolation Problem is nothing more 

than a special case of the Chinese Remainder Problem in Ftx]~special in 

that the relatively prime moduli polynomials are all linear. (We shall 

consider an example of the more general case at the end of this section.) 

As in the integer case, it is convenient to regard (4.6) (or (4 7)) 

as specifying the modular representation 

"̂''̂  = f"o'"i "„] (4.8) 
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of the (unknown) polynomial u(x) of (4.5). 

Note that the well-known uniqueness property of the interpolating 

polynomial (4.5) can be established entirely within the ring-theoretic 

context at hand, for according to Sec. 3 (following (3.3)), a solution to 
n 

(4.7) is unique modulo H (x-x.), i.e., unique modulo a polynomial of 
1=0 "• 

degree n+1. But no two distinct polynomials of degree <p can be congruent 

modulo a polynomial of degree n+1, which establishes uniqueness. 

One remark on terminology: With respect to a coefficient domain D, we 

refer to "the Interpolation (or Chinese Remainder) Problem in D[x]" when­

ever the solution polynomial (4.5) is known (from a priori considerations) 

to lie in D[x] and the evaluation points x are chosen in D (whence the 

sample values u of (4.6) are also in D). Of course, nothing new is in­

volved in theory, since we may always embed D in its field of quotients 

Q(D) in order to obtain the Euclidean domain Q(D)[x]. However, because 

computation in Q(D) is typically far more complicated and time-consuming 

than computation in D, we shall be especially concerned with "D-closure" 

characteristics of our various Chinese Remainder algorithms, i.e., con­

cerned with whether or not these algorithms involve intermediate computa­

tion in Q(D)[x] even though the solution polynomial is in D[x]. 

The situation wherein the solution polynomial u(x) is known to lie in 

D[x] arises naturally in symbolic computation, where D is typically the 

integers 2^ (or, recursively, multl-variate polynomials with coefficients in 

Z) . For example, consider the problem of inverting a matrix A = A(x) with 

elements a.,(x) E ̂ [ X ] . Formally the solution is given by the matrix of 

rational functions 

A(x)"-'- = B(x)/d(x) (4.9) 

where B(x) = (b.,(x)) is the adjoint of A and d(x) is the determinant of 

A. Now instead of computing with polynomials or rational functions one can 

instead compute B(x.), d(x ) for a sufficient number of "sample values" 

X E Z in order to construct the polynomials b..(x), d(x) by interpolation, 

and hence obtain the desired inverse according to (4.9). Note in particu­

lar that the polynomials b . , (x), d(x) are known a priori to lie in Ẑ [x] 
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because they all have determinantal definitions. Moreover, the number of 

sample values x that must be used in order to recover the solution can be 

readily determined (or bounded) in terms of the input data â ^̂  (x), but we 

shall not consider this problem here. 

Lagrangian Solution to the Chinese Remainder Problem in Ẑ  and F[x]. 

In Ẑ  the Lagrangian Formula for solving (3.1) takes the form (3.4 -

3.5) with the s 's of (3.4) computed by the extended Euclidean algorithm. 

Thus in the integer case there is no simplification in the Lagrangian 

Formula over the general Euclidean domain case. However, one point is 

noteworthy, namely the equivalence between the ancient Chinese Formula 

(e.g. cf. [16, p. 246]) for solving the system of congruences (3.1) in Ẑ  

and the Lagrangian Formula (3.4 - 3.5). This ancient Chinese Formula takes 

the form 

" = I \W • (̂ -10) 
k 

where 

Mj^ = n m^, bjM^ E 1 (modmj^). (4.11) 
is'k 

Thus, in order to e s t ab l i sh the equivalence of (4.10 - 4.11) with (3 .4 -

3.5) we need only ver i fy tha t | n s)*^^! i s a s o l u t i o n to the congruence 
ijtk ^ "k 

b.M^ E 1 (mod m^). But 

' " "f^L^k ' " y^", (-""d m̂) iĵ k ^ \ k i^k 1 i Ic 

= 1 (mod m^) by ( 3 . 3 ) , 

which e s t ab l i shes the equivalence. 

Example 4 . 1 . u has the modular r e p r e s e n t a t i o n u = [6 , 9, 2 , 13] with 

respect to the moduli m = (7, I I , 13 , 15) ; i . e . , u E 6 (mod 7 ) , u E 9 

(mod 11) , e t c . Compute u (as a decimal i n t e g e r ) . 

* 
By the Chinese Remainder Problem in F[x] we shall mean the special case 
(4.7) corresponding to the Interpolation Problem in F[x] unless indicated 
otherwise. 
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25 

0̂ = 

h = 

|(2)(6)(1)|^ X 2145 = 10725 

I (8)(6)(3)1^^ X 1365 = 1365 

I(2)(6)(7)1^3 X 1155 = 6930 

|(13)(11)(7)|^^ X 1011 = 11011 

whence 

u = 6(10725) + 9(1365) + 2(6930) + 13(11011) 

= 233638 

If we abide by the convention of taking 0<u<IIm. as constituting the solu-
~ 1 ^ 

tion the Chinese Remainder Problem, then 

u = 12336381^50^3 

= 8413 

For the case of the Chinese Remainder (Interpolation) Problem in F[x] 

(where m (x) = x-x. (i=0,l,. .. ,n)—see (4.7)), the s^ •̂ 's of (3.3) can be 

determined explicitly from 

1 
(x-x,) + 

X, -X. i Xj-x, k 1 ^i -̂ k 
(x-Xj^) = 1 , (4.12) 

whence 

,(k) (4.13) 

The Lagrangian Formula (3.4 - 3.5) then becomes 

1 
L^(x) = 

n (x^-x^) 
î 'k (x-x^) 

n (x-x ) 
ii'k ^ 

n (x-x ) 
i#k ^ 
n (x -X ) 
i#k ^ 

(4.14) 
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and 

u(x) = I \\(^) • 

Thus our Lagrangian Chinese Remainder Formulas (2.6 - 2.7) and (3.4 - 3.5) 

have specialized in (4.14 - 4.15) to Lagrange's Interpolation Polynomial 

(thus the term "Lagrangian" that we have employed in the more general 

cases). Also we conclude that the ancient Chinese solution (4.10 - 4.11) 

to the integer Chinese Remainder Problem and Lagrange's Interpolation 

Polynomial (4.14 - 4.15) are abstractly equivalent. 

Example 4.2. u(x) has the modular representation [10, 334, 1040, 

5920] with respect to the moduli m(x) = (x-1, x-4, x-6, x-11); i.e., 

u(l) = 10, u(4) = 334, etc. Compute u(x) in the standard form (4.5). 

Lagrangian solution (Lagrange Interpolation). From (4.14 - 4.15) we 

have 

. , i„ x^ - 21x^ + 134x - 264 
U(X) = 10 ^jj-jg^ 

^ ... x^ - 18x^ + 83x - 66 
+ 334 — ^2 

16x^ + 59x - 44 
+ 1U4U —— 

3 

3 2 
4x + 5x 

-50 

- l l x ^ + 34x -
350 

- x + 2 

- 24 

Newtonian Solution of the Chinese Remainder Problem in Ẑ  and F[x]. 

In ̂  the Newtonian Formula for solving (3.1) takes the form (3.8), 

which can be implemented according to Algorithm Nl (essentially (3.12)), 

Algorithm N2 (essentially (3.14)), or Algorithm N3 (essentially 3.6 -

3.7')). We Illustrate the three methods below. 

Example 4.3. Compute the solution u to the Chinese Remainder Problem 

of Example 4.1 (u has the modular representation [6, 9, 2, 13] with respect 
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to the moduli m = (7, 11, 13, 15)), this time employing Newtonian methods, 

(k) 
The (precomputed) constants ŝ  , c , q used by Algorithms Nl, N2, 

and N3 are as follows: 

cd) _ o J2) _ , (3) _ ,, SQ - 8, SQ - 2, SQ - 13 

J2) _ . (3) _ „ 
S_ = O, S- = 11 

s") = 7 
^2 ' 

c ^ = 8 , 0^=12, C3=ll 

\ ^ ^' ''2 " "• '̂3 " °̂°̂  

Method 1: Following Algorithm Nl, we compute 

ao= |6|7=6 

ai = 1(9-6)81^1 = 2 

a^ = 1(2 - (2x7+6))12I^3 = 5 

33 = 1(13 - ((5x11+2)7+6))111^5 = 8, 

whence by (3.10) u has the Newtonian representation 

u = <6, 2, 5, 8>, 

and finally by (3.8) and (3.17) 

u = 6 + 2(7) + 5(7)(11) + 8(7)(11)(13) 

= ((8x13+5)11 + 2 ) 7 + 6 

= 8413, as in Example 4.1. 

Method 2: Following Algorithm N2, we compute 

-0= 1̂ 17 = ̂  

a^ = |(9-6)8|^i = 2 
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a^ = I((2-6)2 - 2)61^3 = 5 

33 = i(((13-6)13 - 2)11 - 5)7ii5 = 8, 

giving u = 8413, as above. The associated table of multiplied-differences 

(which essentially records the partial results in the computation of the 

a, 's, as discussed following the proof of Theorem 3.2) is displayed below. 

Table 4.1. 

[ ] 

Multiplied-Differences of [6, 9, 2, 13] 
with Respect to m = (7, 11, 13, 15) 

i , ] [ , , ] [ , , , ] 

^ = ^0 

9 ^ " ^1 

2 5 ^ " ^3 

13 1 4 

Method 3: Following Algorithm N3, the variables v, a, U are 

successively computed as 

k=0: U = 6 

k= 1: V = |6|^^ = 6 

a = |(9-6)8|j^i = 2 

U = 6 + 2 X 7 = 20 

k=2: V = I 201^2 = 7 

a = I(2-7)12 I^^ = 5 

U = 20 + 5 « 77 = 405 

k=3: V = |405|^3 = 0 

a = 1(13-9)111^3 " ^ 

U = 405 + 8 X 1001 8413 
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The final value of U is then the solution to the Chinese Remainder Problem. 

Note that the variable a in Algorithm N3 takes on successively the values 

a,,a ,...,a of the Newtonian representation of u, but these values are not 
1 2 n 
retained. 

We turn now to the Chinese Remainder (Interpolation) problem in F[x]. 

With moduli m (x) = x-x., the Newtonian Formula (3.8) becomes 

n-1 
u(x) = a- + a,(x-x.) + ... + a n (x-x.) . (4.16) 

0 1 0 n ^^Q 1 

Now |p(x)| , , = p(x ) for any p(x) E F[x], and s. = l/(x,-x ) 
m, (x̂  1 i ic 1 

from (4.13). Thus, if we define 

r,̂*"̂  = l/s':^'> = x-x, , (4.17) 
1 1 k 1 

k-1 
b^ = 1/C|̂  = n (x,̂ -x̂ ) (cf. (3.13)) 

1=0 

then (3.12) , which serves as the basis for Algorithm Nl, becomes 

\ - K - ((•••(vi^k-2 ^ \ - A % ^ •••^y' ^o^'y ''•''' 

Similarly, (3.14), which serves as the basis for Algorithm N2, becomes 

,(k) _ , ̂ /.(k) _ _ , ^/.(k) 
k ^•••^\-%^y-^i^y---\-i^y-i ' ''•''' 

and (3.6) and (3.7'), which serve as the basis for Algorithm N3, become 

uf''̂ (x) = uf'''̂ (̂x) + a^ ii (x-x.) (4.20) 
" 1=0 ^ 

and 

a^=(u^-u[>^-^](x,))/b, . (4.21) 

On substituting 1/x^-x^ for ŝ *"̂  in (3.15 - 3.15") we obtain 

[x-X|̂ ] = u(X|̂ ) , (4.22) 
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[x-x, ] - [x-x ] 

[x-x„,x-x ] 
(4.22') 

0'" "k^ x^-Xg 

[X-XQ,...,X-X^_2,X-X^] - [x-Xo,...,x-x^_^,x-x^_i] 
(4.22") 

We observe that the multiplied-differences introduced in the context 

of an arbitrary Euclidean domain have specialized in the polynomial case 

to the divided-differences of the classical Newton's Interpolation Poly­

nomial, the latter being given by (4.16) (thus the term "Newtonian" that 

we have employed in the more general algebraic contexts of Sections 2 and 

3). The customary notation for the divided-difference [x-x ,x-x ,... , 

='-Vl'='-V ^' [Xo,x^,...,x^_^,x^]. 

We apply the above Newton polynomial formulas in 

Example 4.4. Compute the solution u(x) to the Chinese Remainder 

(Interpolation) Problem of Example 4.2 (u(x) has the modular representa­

tion [10, 334, 1040, 5920] with respect to the moduli m(x) = (x-1, x-4, 

x-6, x-11)), this time employing Newtonian methods. 

First we consider the (precomputed) constants needed by the Newtonian 

Algorithms Nl, N2, and N3. For the case of the Interpolation Problem in 

^[x], it is more convenient to have r. ^ = 1/s. , b = 1/c of (4.17) 
/i,\ i k k 

(integer quantities), rather than the s. ''s and c 's themselves (rational 

quantities). Thus, for example, lines 7 and 8 of Algorithm Nl would util­

ize these constants according to 

\ ••• < V " " k • 

and similarly for Algorithms N2 and N3. 
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(k) 
For the problem under consideration, the constants r , b, , and 

1 k 
q (x) (cf. (3,16)) are as follows: 

4" = 3 , r(2) = 5 
0 ^' 

r(2) = 2 

. < " . 10 

bĵ  = 3 , b^ = 10, bj = 350 

q̂. (x) = X - 1 

2 
q2(x) = X - 5x + 4 

q3(x) = x^ - llx^ + 34x - 24 . 

Method 1: Following Algorithm Nl and (4,18), 

ao = 10 

a^ = (334-10)/3 = 108 

a2 = (1040 - (108x5 + 10))/10 =-49 

ag = (5920 - ((49x7 + 108)10 + 10)/350 = 4, 

whence from (4.16) and (3.17) 

u(x) = 10 + 108(x-l) + 49(x-l)(x-4) + 4(x-1)(x-4)(x-6) 

= (((4(x-6) + 49)(x-4) + 108)(x-1) + 108) + 10 

3 2 
= 4x + 5x - X + 2 . 

Method 2: Following Algorithms N2 and (4.19) 

a„ = 10 

a = (334-10)/3 = 108 
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a = ((1040-10)/5 - 108)/2 = 49 

a = (((5920-10)/I0 - 108)/7 - 49)/5 = 4 

Conversion to standard form is carried out as in Method 1. 

The Intermediate values in the above computation of the a 's consti­

tute the following table of divided-differences (analogous to the table of 

multiplied-differences in the integer case of Example 4.3). 

Table 4.2, 

[ ] 

Divided-Differences of [10, 334, 1040, 
with Respect to m(x) = (x-1, x-4, x-6. 

[ , ] [ . . ] [ , . . 

5920] 
x-11) 

] 

10 = 

334 

1040 

5920 

= ̂ 0 

108 = 

206 

591 

^ 

49 = 

69 

= ̂ 2 

4 = = ̂ 3 

Method 3: Following Algorithm N3 and (4.21), v, a, U are successively 

computed as 

k=0: U(x) = 10 

k=l: V = U(4) = 10 

a = (334-10)/3 = 108 

U(x) = 10 + 108(x-l) 

= 108X-98 

k=2: V = U(6) = 550 

a = (1040-550)/lO = 49 

U(x) = 108X-98 + 49(x^-5x+4) 
2 

= 49x -137X+98 

k=3: V = U(ll) = 4520 

a = (5920-4520)/350 = 4 

U(x) = 49x^-137x+98 + 4(x-'-llx^+34x-24) 
3 2 

= 4x-'+5x -x+2 
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The final value of U(x) is then the solution to the given Chinese Remainder 

(Interpolation) Problem, agreeing with the solution obtained by the other 

Newtonian and Lagrangian methods• 

We return now to Algorithm N2 (which employs divided-differences 

either Implicitly or explicitly), and observe a noteworthy aspect of 

Table 4,2—the entries are all integral, which means that the indicated 

divisions in (4,22* - 4.22") have been exact. This is a most important 

property of divided-difference tables associated with interpolation prob­

lems in ̂ [x] if it should be the case in all such problems, for it means 

that all the values (both intermediate and final) generated by the Newton­

ian Algorithm N2 (and hence Algorithms Nl and N3) are integer, which in 

turn means that no rational mode arithmetic is required—a most important 

implementation consideration. 

We now prove this important "fraction-free" property under the more 

general conditions of 

Theorem 4,1. Consider the Interpolation Problem in D[x], where D is 

an integral domain. (Thus the solution polynomial u(x) E D[x] and the 

evaluation points x. (1=0,1,,,,,n) are chosen in D—see the discussion 

"One remark on terminology" following (4,8).) Then the divided differences 

(4.22 - 4.22") are all in D (i.e., the indicated divisions are all exact 

so that no quotients are produced). 

Proof. Define the sequence d (x),d (x),...,d^(x) E Q(D)[X] according 

to 

dQ(x) = u(x) (4.23) 

d,(x) =-5 (4.23-) 
1 x-x. 

and recursively 

d. .(x) - a 
d.(x) =-J=^i i ^ (4.23") 

x-x^_^ 
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It follows from the divided-difference recursion (4.19 - 4.19") (and the 

fact that a^ = [x-x„. • • • .x-x^.^.x-x^.,] by the Corollary to Theorem 3.2) 

that 

a^(x^)=[x-x„,....x-x^.,,x-x^] (llk<n) (4,24) 

and, in particular, 

W - ' . • 

It follows from (4,24) that if we can show that each d^(x) E D [ X ] , 

then the theorem is established. 

Now d (x) = u(x) E D [ X ] , by assumption. Proceeding by induction, 

assume d^_^(x) E D [ X ] , By the (limited) Division Algorithm in D[x] (see 

[1, p. 39]), 

di_i(x) = (x-x^_^)q(x) + r , (4.26) 

where q(x) E D [ X ] , r E D, Setting x = x^_^ yields r = d^_j^(x^_j^) = a^_j^ 

by (4.25). Then 

d. (x) - a, , 
, , 1-1 1-1 

<i(x) — r 

= d^(x) by (4.23") 

so that d.(x) E D[x], completing the proof of the above assertion, and 

thence the proof of Theorem 4.1. 
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The More General Chinese Remainder Problem in F[x]—an Example 

Although in F[x] we have mainly restricted our attention to a special 

(but most important) case of the Chinese Remainder Problem, namely the 

polynomial Interpolation Problem where the moduli polynomials are all lin­

ear, the various solutions that have been presented are by no means re­

stricted to this special case. In order to illustrate the more general 

nature of the Chinese Remainder Problem in F[x], we conclude this section 

with 

Example 4.5. u(x) has the modular representation [-8, llx+17, 
2 2 3 2 

17x -x-2] with respect to the moduli in(x) = (x+2, x -3, x -3x +1). (Thus 
u(x) E -8 (mod x+2), etc) Compute u(x). 

Solution. First we note that u(x) is determined uniquely modulo 

m.(x)m (x)m (x), whence there is a unique polynomial with degree ;̂ 6 having 

the above modular representation: this polynomial is then the solution 

u(x) , 

We proceed by the Newtonian Formula (3.8), which becomes 

u(x) = a^ + a^(x+2) + a2(x+2)(x^-3) 

The a 's are determined by computing the table of multiplied-differences 

(which can be regarded in this context as "generalized" divided-differen­

ces) according to (3,15 - 3,15"), (Thus we are essentially using (3.14) 
(k) 

and Algorithm N2,; First we need the sj' *s of (3,3): 

y' - --
(2) x^-5x+10 

^0 19 • ; " • 
3x^-x-15 

37 

and the following table is computed. 
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2 
Table 4,3. Divided-Differences of [-8,•llx+i7,-17x -x-2] 

2 
with Respect to m(x) = (x+2, llx+17, 17x -x-2) 

[ ] [ . ] [ . . ] 

llx+17 -3x+17 = a 

17x -x-2 4x^-3x+5 ^ " ̂ 2 

The desired solution is then 

u(x) = -8 + (-3X+17)(x+2) + 4(x+2)(x^-3) 

3 2 
- 4x + 5x - X + 2 . 
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5. ANALYSIS AND APPRAISAL OF CHINESE REMAINDER 
AND INTERPOLATION ALGORITHMS 

In the previous sections we have identified and illustrated two classes 

of methods, Lagrangian and Newtonian, for computing the solution to the 

Chinese Remainder Problem in increasingly specialized contexts. Because of 

the general validity (and hence interchangeability) of these methods, it is 

appropriate to analyze the various algorithms based on the Lagrangian and 

Newtonian Formulas with respect to time and storage requirements in an 

effort to answer the Important question "which one is best?" This section 

Is devoted to such an analysis and appraisal, carried out In the contexts 

of (i) the Chinese Remainder Problem in Ẑ, and (ii) the Interpolation Prob­

lem in Z^[x]—the two cases of primary importance for symbolic mathematics 

by computer. The assumptions made in the analysis of algorithms are 

especially relevant to their application to exact and symbolic computation, 

as shall be explained. 

In ̂  the Chinese Remainder Problem is: Compute the solution u 

{0 <_ u < Ilm ) to the system of congruences 

u E u. (mod m.) (1=0,1,...,n) . (5.1) 

It is assumed that the moduli m are specified and fixed beforehand, 

so that precomputation involving these m.'s may be carried out. Also, it 

is assumed that both the m.'s and the u.'s are single-precision integers. 

These assumptions reflect the situation wherein residue methods are 

employed to obtain the "exact" solution (i.e., the solution over the ra-

tionals Q^ instead of over the reals R, thus circumventing round-off error) 

to a variety of computational problems, such as matrix inversion and 

characteristic polynomial evaluation. The basic idea here is first to 

transform the problem so that the solution can be expressed in terms of 

integers (eg. over ̂  to determine the numerators and denominators of 

rational numbers), and then to carry out the computations over the field 

The sketchy description of the residue method given here is sufficient 
for our motivational purposes. Complete references to the literature in 
this area are given in the next section. 
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Z of integers modulo p for several primes p in order to eventually recon­

struct the integer solution by application of a Chinese Remainder formula. 

In such applications the moduli m. are typically chosen as the n+1 largest 

primes that fit into a machine word. 

Finally we make the following assumptions concerning multiple-precision 

integer arithmetic, which are consistent with the standard algorithms and 

machine hardware employed for this purpose. If a and b are integers with 

precision pr(a) " n and pr(b) - m (n ̂  m ) , then the number of single-pre­

cision (machine) additions (# ) , multiplications (#^). and divisions (#^) 

required for computing a+b, axb, avb are given by 

a+b? 

axb: 

arb: 

(5.2) 

2mn-m-n 

(2n-l)(m-n) 

(m-n)n 

with the precision of the results being given by 

pr(a+b) ^ m (5,3) 

pr(axb) = m+n 

pr ( r^ (b ) ) = n (r^(b) = remainder when b i s d iv ided by a) 

The number of words of memory requi red to s t o r e a , b , . . . , c i s denoted 

by s t ( a , b , , , , , c ) . 

We now proceed with the analyses of the va r ious integer Chinese 

Remainder Algorithms. 

.Integer Lagrangian Chinese Remainder Algorithm: The s o l u t i o n u E Z 

to (S . l ) i s computed accordine to ("3 i _ i •;̂  T-U„ ^ 
f ^^oiumg CO (,j,i( - 3 , 5 ) . The Lagrangian c o e f f i c i e n t s 
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^k °^ (3.4) are precomputed and stored. The number* of machine operations 

and words of storage (for precomputed values) are given according to 

(5.2 - 5.3) by 

#+ = 2n2 (5_,) 

with 

st(L.,L ,...,L ) = n^ 
"0' 1' n 

The operations (+,x,v) required for the multiple-precision divisions of u 

obtained by (3.5) (pr(u) = n+2) by M = Ilm̂  (pr(M) = n+1) in reducing u to 

the range 0 <_ u < M have been ignored, since they do not contribute to the 
2 

order n terms of (5.4). 

Integer Newtonian Chinese Remainder Algorithms: We analyze first the 

Newtonian Algorithms Nl and N2, then N3. 

It is convenient in the analysis (and application) of Algorithm Nl or 

N2 to regard the solution u to the Chinese Remainder Problem (5.1) as being 

computed in two stages: first is the conversion from modular (3.9) to 

Newton (3.10) representation according to Algorithm Nl or N2; second is 

the conversion from Newton (mixed-radix; to standard (fixed-radix) repre­

sentation via Horner's scheme (3.17). In particular, the operations of 

this second stage are included in the analysis of Algorithms Nl and N2. 

In the Newtonian Algorithms it is assumed that the operations en­

closed within the modulo m operator | | are all carried out modulo m; 

thus, for example, |a + bxc| is computed as la + jbxcl I . Also it is 
m m m 

assumed that each modulo m operation is carried out by the corresponding 

Integer operation followed by a division by m in order to render the 

result in the range 0 ̂  x < m. 

When the number of operations and words of storage are given by polynomial 
functions of n, only the highest-order term in each case is retained. 
For moderate and large values of n (the cases of interest for computing), 
the time and storage requirements are essentially determined by these 
highest-order terms. 
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(k) 
With the constants c, of (3.13) and s) of (3.3) precomputed for use 

k 1 
in Algorithms Nl and N2 respectively, the operations counts are given by 

Stage 1; (Modular to Newton conversion using (5.5) 
Algorithm Nl or N2) 

# = n^2 

Stage 2: (Newton to fixed-radix conversion using (3.17)) 

//̂  - n^2 

Combining the two stages gives the overall operations counts 

2 
(5.6) #. - n' 

# ^n^ 
X 

with storage requirements 

st(c^,,.,,c^) = n for Algorithm Nl (5,7) 

•̂̂ ^̂ 0 V l ^ ' " /2 for Algorithm N2. 

Turning to the analysis of Algorithm N3, at step k of the iteration we 

have by (5,2) that pr(U = .^^-^\ . k. By (5,1) the number of operations 

at step k required to compute v is # :. k-1, # = k-1 # ~ k i . ̂ „ 

+ ' "x •̂' "i - 2, and to compute U = u' •' is # = 2k-l # ~ k 

The overall operations counts for Algorithm N3 are then gtven by ' ^ ' 
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= 3n^/2 

n^/2 

(5,8) 

with storage requirements (taking into account that pr(q, ) - k) 

st(c^,,,,,c^;q^,,..,q^) = n /2 (5.9) 

The results of the analyses of the various integer Chinese Remainder 

Algorithms are summarized in the following table. (# = Total number of 

machine operations +,X,T.) 

Table 5.1, Operations and Storage Requirements 
for Integer Chinese Remainder Algorithms 

Algorithm 

Lagrangian 

Newtonian -

-

-

Nl 

N2 

N3 

*+ 

2n2 

2 
n 

2 
n 

3n^/2 

#̂  

2 n 

2 
n 
2 
n 
2 

n 

#̂  

2 
n 

2 
n 

n'n 

"z 

3n2 

3n2 

3n2 

. 3n3 

Storage 

2 n 

n 

n^/2 

n'n 

We now analyze the various polynomial Chinese Remainder (Interpola­

tion) Algorithms. Here we are concerned specifically with the Interpola­

tion Problem in Ẑ [x] : Compute u(x) s ̂ [x] such that 

U(X^) = Uj^ (k=0,l,,,,,n) , (5,10) 

where x^>u, e .Z, and deg u(x) ̂  n. 

Cf, the discussion "Remark on terminology" following (4.8) for the 
motivation underlying the assumption that the interpolation polynomial 
u(x) e ̂ [x] rather than ̂ .[x]. 
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Polynomial Lagrangian Interpolation Algorithm. The solution u(x) £ 

^[x] to (5.10) is computed according to the following embellished version 

of (4,14 - 4,15); the embellishments are for the purpose of avoiding inter­

mediate rational mode arithmetic that would be required if (4.14 - 4.15) 

were applied explicitly (cf. Example 4,2), 

From (4.14) we have 

\M = \(x)/\ . (5.11) 

where 

Now define 

J!.,(x) = n (x-x ) e Z[x], d, = n (x,-X ) E Z 
i5̂ k ^ - "̂  i^k 1̂  ^ -

a = g.c.d, (dQ,d^,...,dJ (5,12) 

e = Jld /a (= l,c,m, (d„,d,,...,d )) 
^ ^ U 1 n 

Y, = n d./a . 
iĵ k 

Then u(x) is computed according to the fraction-free 

I ^ k 

u(x) = (5.13) 

which clearly yields the same final result as (4,15). 

With i^(x), Y^, and 6 precomputed, the integer operations counts 

(ignoring those of order n) are given by 

(5.14) 

with storage requirements 

st(^0(x),,,.,^^(,);,^,^^,..._^^.3^ ^^2 
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Polynomial Newtonian Chinese Remainder Algorithms: We analyze the 

Newtonian Algorithms Nl, N2, and N3 in turn. 

As the integer case, it is convenient in the analysis (and applica­

tion) of Algorithm Nl or N2 to consider the solution u(x) to the Interpo­

lation Problem (5.10) as being computed in two stages. First is the 

conversion from modular (sample-value) representation [u.,u,,..,,u ] to 
0 1 n 

the Newton representation <a ,a a > corresponding to (4.16); second 
0 1 n 

is the conversion from the Newton representation to standard representa­
tion u(x) = s X +8 ,x +...+s„ by applying Horner's scheme (3.17) to 

n n-i 0 
(4.16), which becomes 

u(x) = (...(a (x-x ,) + a ,)(x-x ,)+..,+a (x-x ) + a , (5,16) 
n n-1 n-1 n-2 1 0 0 

The operations counts (ignoring those of order n) for Algorithm Nl 

(following (4.18)) are then given by 

Stage 1: (Sample-value to Newton conversion - (5,17) 
Algorithm Nl proper) 

#^ - n^/2 

Stage 2: (Newton to standard form conversion 
using (5.14)) 

#^ -- n^/2 

# = n^/2 

Combining the counts for two stages gives 

,2 ' (5.18) 

2 

*+ ~- " 

it - n 
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with storage requirements 

s.(rr.—:-l^V="^- * 
The operations counts for Algorithm N2 (following (4.19)) are the 

same as for Algorithm Nl except that the multiplications of stage 1 are 

replaced by divisions. Thus the overall operations counts corresponding 

to (5.18) is 

#^ ~- n2 (5.20) 

iK = n^/2 

with storage requirements 

st^y yi>~--^ • (2-21) 

As for Algorithm N3 (see also (4,20 - 4.21)), at step k of the Itera-
fk-ll 

tion the polynomial U(x) = u^ ^ (x) has degree k-1. Thus, the number of 

operations at step k required to compute v = U(x, ) is (applying Horner's 

Rule) //, = k-1, # = k-1, to compute a is # = 1, #^ = 1; and to compute 
' "" k-1 

U(x) = u (x) (assuming the q, (x) = n (x-x.) are precomputed) is 
" i=0 ^ 

# = k-l. # = k-1. The overall operations counts for Algorithm N3 are 

then given by 

#, = n^ (5.22) 

with storage requirements (taking into account that deg q, (x) = k) 

2 
st(q (x),...,q (x);b, b)=^ . (5.23) 

1 n i n Z 

Of course the storage requirements can be reduced to =n by computing the 
(k) 

simple quantities r = x -x . We have adopted the policy of precomput-

ing all precomputable constants not so much for efficiency as for 

uniformity. 
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The results of the analyses of the various polynomial Interpolation 

Algorithms are suiranarlzed in the following table. 

Table 5.2. Operations and Storage Requirements for 
Polynomial (Z[x]) Chinese Remainder Algorithms 

Algorithm 

Lagrangian 

Newtonian -

_ 

-

Nl 

N2 

N3 

"+ 

2 
n 
2 n 

2 
n 

n2 

# 
X 

2 
n 
2 n 

2 „ 
n /2 
2 

n 

#̂  

nhl 

// 
T 

2n2 

2n2 

2n2 

2n2 

storage 

2 
n 

2 
n 

2 n 

2 
n 

Note that in the analysis of the polynomial Chinese Remainder Algor­

ithms, we have made the tacit assumption that precomputed and computed 

integer quantities (including polynomial coefficients) are all single-

precision. This may not be a realistic assumption when the solution 

polynomial has large (albeit single-precision) coefficients, or when the 

solution polynomial has very small (say single digit!) coefficients but 
30 3 

moderate or large degree; e.g., consider the evaluation of u(x) = 2 x 

for X = 2, or u(x) = x for x = 10, on a machine with a 32-bit word. 

Also in the Lagrangian case the precomputed quantity B in (5.12) will 

typically be multiple-precision, necessitating n multiple-precision 

divisions in (5.13). 

In order to avoid the problem of having Integer overflow preventing 

the determination of single-precision results, the various polynomial 

Chinese Remainder Algorithms can be carried out using modulo p arithmetic, 

where p is chosen as the largest single-precision prime. Thus we compute 

the solution u(x) to the Interpolation Problem (5.10) in Z [x] (where the 

u 's are reduced modulo p) instead of in Ẑ [x] . Here we are exploiting the 

k 

simple fact that if an integer x (specifically a coefficient of the solu­

tion polynomial u(x)) satisfies 

|s| 1 (p-l)/2 (5.24) 
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then s = |s| provided only that the modulo p operator is (re-)defined to 

return its value in the range + (p-l)/2. 

Carrying out the operations of (4.14 - 4.15) (Lagrangian Algorithm), 

(4.18), (4.19), (4,20 - 4,21) (Newtonian Algorithms Nl, N2, N3, respective­

ly) modulo p—in particular all indicated divisions become modulo p multi­

plications by (precomputed) modulo p inverses—it is readily verified that 

the four algorithms have the same (approximate) operations counts and 

storage requirements, given by 

#^ . n^ (5.25) 

# ^n^ 
X 

tL ' 2n^ 

with 

storage = n 

Finally, we note that there is one possible pitfall to this modulo p 

approach to the Interpolation Problem in Ẑ [x], namely one or more of the 

coefficients of the solution polynomial u(x) may be beyond the range (5,24). 

But then we can solve the Z [x] Interpolation Problem for several primes p 

in order to reconstruct u(x) E ̂ [X] by applying one of our integer Chinese 

Remainder Algorithms to the modulo p values of the coefficients in turn. 

Moreover, the process just described is the basis of a recursive solution 

to the multl-variate Interpolation Problem: Determine the solution 

u(x,y,...,z) E Ẑ [x,y z] satisfying 

u(x.,y.,,..,z^) E u^^.____^^ (mod p^) (5,26) 

(1=0,1,.,,,n: j=0,l,,,.,n ; ,.,; k=0,l,...,n ; 1=0,1 n„) . 
A y Z p 

The solution u(x,y z) is obtained by interpolating in turn with respect 

to the moduli z-Zĵ ,.,. ,y-y x-x^ and finally solving integer Chinese Re­

mainder Problems with respect to the moduli p in order to recover the 

integer coefficients of the solution polynomial u(x,y,,..,z) , which is of 
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degree < n in x, < n in y ,...,< n in z, We shall not discuss the 
— X y — z 

implementation details of this multl-variate interpolation process here. 

Appraisal of the Chinese Remainder Algorithms. The operations counts 

in Tables 5.1 and 5.2 show that the variations in execution time among the 

Lagrangian and Newtonian Algorithms are not going to be significant. Thus, 

other considerations are more decisive in choosing a method; we will now 

discuss these. 

The integer and polynomial algorithms based on the Lagrangian Formula 

(3.4 - 3.5) have one bad property, in that the moduli m. must all be known 

in advance in order to compute the Lagrangian coefficients (3.4). This is 

a serious disadvantage in practice, for even when the successive moduli 

m„,m ,... are known and fixed, it is frequently the case that the number 

of moduli that must be used is not known in advance but depends (at execu­

tion time) on the larger problem at hand. 

On the other hand, the Newtonian Algorithms Nl, N2, N3 based on 

(3.6 - 3,8) are very favorable in this regard: increasing the number of 

moduli from n to n+1 (at execution time) simply entails performing the 

basic iteration one additional time in generating a ^̂  of the Newtonian 

representation (3.10) (Algorithm Nl, N2) or in passing from U = u to 

U = u ̂ ^^ (Algorithm N3), This very important property of the Newtonian 

Algorithms Nl, N2, and N3, wherein the addition of a modulus is accomplished 

by carrying out an additional iteration of the basic scheme (and utilizing 

the previously generated information), we call extensibility. 

We thus restrict our attention to the Newtonian Algorithms. Using 

Algorithm Nl or N2, the solution u to the integer Chinese Remainder Prob­

lem (5.1) is computed in two stages (see (5,5)), Stage 1 (Algorithm Nl or 

N2 proper) involves only single-precision calculation; all multiple-preci­

sion calculations are carried out in stage 2 (the conversion from Newton 

(mixed-radix) to fixed-radix form by (3.17)). This division of labor into 

these two stages is propitious, for in some applications the Newton repre­

sentation of the solution u may be adequate; e.g., in comparing the magni­

tude of two quantities u,u'. In such applications, stage 2 with its 

attendant multiple-precision arithmetic need not be carried out. In such 

cases any one of the standard algebraic compiler languages such as Fortran, 
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Algol, or PL/I (none of which have a multiple-precision integer arithmetic 

capability) is completely adequate for the implementation. 

In choosing between Algorithms Nl and N2, the former is to be preferred 

because of the much smaller storage requirements for precomputed quantities 

(see Table 5.1). (Indeed, Algorithm N2 was considered only because of its 

relationship in the polynomial case to the divided differences of Newton's 

Interpolation Polynomial.) 

As for Algorithm N3, it requires multiple-precision calculation through­

out its basic iteration. For that reason and because its storage require­

ments are much greater than those.of Algorithm Nl, we choose the latter. 

However, from Table 5.1 we observe that Algorithm N3, while having (approx­

imately) the same number of machine operation as Algorithm Nl, does have 

fewer divisions and more additions. Thus if division is very slow relative 

to addition, one might choose Algorithm N3 over Nl. 

In the polynomial case. Table 5.1 indicates there is little to differ­

entiate with respect to time and storage between Algorithms Nl and N3. How­

ever, as in the integer case, Algorithm Nl offers the flexibility of 

stopping after stage 1 when the Newton polynomial (4,16) has been computed, 

and thus is to be preferred over N3. 

Thus we can conclude this appraisal of our various Chinese Remainder 

Algorithms with the recommendation that the Newtonian Algorithm Nl be used 

for either the integer or polynomial Chinese Remainder Problem, 



6. HISTORICAL, BIBLIOGRAPHICAL, AND CONCLUDING REMARKS 

In [2, p. 407], E. T. Bell states, "The history of interpolation for­

mulae is complicated and controversial." Certainly the same statement 

applies to the history of the (integer) Chinese Remainder Problem. In this 

section we first attempt to briefly delineate the interesting history of 

Chinese Remainder and Interpolation.methods, with emphasis on those aspects 

that are relevant to computation. 

The origins of the Chinese Remainder Problem are not at all certain, 

with dates ranging from 200 B.C. to 400 A.D. Dickson [6, p, 57] attributes 

the solution (in the form of an obscure verse!) of a very special case of 

the Chinese Remainder Problem to the Chinese Mathematician Sun-Tsu around 

the first century A.D. This solution was essentially Lagrangian (i.e., 

according to (3.4 - 3,5)) in character. 

Although Dickson [6, pp. 57-64] mentions the work of some fifty mathe­

maticians (including Euler) in connection with the Chinese Remainder Prob­

lem, there is little doubt that the most comprehensive and algorithmic 

treatment of this problem was due to Gauss in his celebrated "Disquisitiones 

Arithmeticae" [8] (which has recently been translated into English), 

In [8, Art. 32], Gauss has presented a Newtonian* method for solving 

the Chinese. Remainder Problem. The method described is essentially that 

of Algorithm N2 or N3, but the level of detail does not allow us to decide 

which. However, quite evident in the discussion of Art. 32 is the Newton 

(mixed-radix) Formula (3.8) for the solution. 

In [8, Art. 35], Gauss has given what is essentially the Lagrangian 

solution (3.4 - 3.5) of this paper. (His stated preference for the 

Lagrangian over the Newtonian method of solution can perhaps be challenged 

in view of the results of Sec. 5 of this paper.) 

The terms "Newtonian" and "Lagrangian" in connection with solutions to 
the integer Chinese Remainder Problem are, of course, the author's own 
terminology. 

Actually Gauss considers the more general Chinese Remainder Problem 
wherein the moduli are not necessarily relatively prime. This generali­
zation is not of practical interest for us, because in applications to 
computation the moduli mj_ are typically chosen not only as relatively 
prime but as prime so that the integers modulo each m-̂  have the structure 
of a field. 
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It is interesting to note that although Gauss and Euler were great 

computers (in the personal sense of that word) there is no indication in 

their works on the Chinese Remainder Problem that they considered the solu-

to be of any computational value, such as in calculating with large inte-

gers-to them as to others the Chinese Remainder Problem was a puzzle from 

Number Theory, 

The first computational application of the Chinese Remainder Problem 

seems to have occurred as late as the mid 1950's when two Czechoslovakian 

computer designers. A, Svoboda and M. Valach, realized the advantages of 

machines whose arithmetic was carried out in a modular fashion (for several 

"hard-wired" moduli), the foremost of these advantages being the carry-free 

nature of addition and multiplication. The Chinese Remainder Problem in 

this case was essentially the problem of conversion of numbers from inter­

nal (modular) form to external (standard decimal Integer) form. Inde­

pendently and slightly later, these same ideas occurred to H. Aiken and 

H. Garner in the United States. 

Ic is not our purpose to delineate the tremendous amount of research 

conducted in the area of modular arithmetic computers. An extensive 

account and annotated bibliography.is given by Szabo and Tanaka [17] . 

The prevailing opinion concerning the modular arithmetic approach to 

general^purpose computer hardware design is that the experiment was 

largely a failure. Although modular arithmetic computers afforded a few 

advantages over traditional design, it turned out that certain basic oper­

ations such as sign detection and scaling (which are trivial using standard 

representations for numbers) are intrinsically difficult when numbers are 

expressed in modular form, i.e., no efficient algorithms exist for these 

operations—see [17, Sec, 4,3] for such a result. 

Much more successful have been the programming (i.e,, software as 

opposed to hardware) applications of modular arithmetic, described in 

Takahasi and Ishibashi [18], Borosh and Fraenkel [3], and Newman [14]. 

These papers all investigated the exact solution of linear equations using 

modular arithmetic along the lines sketched near the beginning of Sec. 5. 

They employed a variety of Chinese Remainder Formulas (both Lagrangian and 

Newtonian) in their solutions. Recently Cabay [4] has considered the same 

problem, suggesting several points of improvement over previous methods. 
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The.theory and practice of polynomial interpolation has for its start­

ing point the definitive and celebrated work of Newton, specifically Lemma 

5, Book 3 of the Principia [15], where Newton's Interpolation Formula and 

associated table of divided differences (essentially Algorithm N2 of this 

paper) first appeared. 

Lagrange s Interpolation Formula was given by Lagrange in [12], How­

ever, this formula was discovered earlier by Waring [19],** 

In [9], Gauss discussed both Lagrange's and Newton's Interpolation 

Formula. It is thus noteworthy that Gauss considered in depth both cases 

of the Chinese Remainder Problem, integer and polynomial (and for each case 

considered both methods of solution, Lagrangian and Newtonian), yet he did 

not seem to recognize any relationship between the two cases. Perhaps this 

stems from the fact that the algorithmic details and contexts were quite 

different for the two problems—Gauss was very much the pure mathematician 

(number theorise) in the integer case, and applied mathematician (astro­

nomer) in the polynomial case. 

Of course, the standard applications of polynomial interpolation for­

mula are numerical—the interpolation polynomial is not just constructed 

but also evaluated for intermediate values of the argument. Indeed, Newton 

applied his interpolation formula in [15, p. 500] to a problem from astro­

nomy: "Certain observed places of a comet being given, to find the place 

of the same at any intermediate given time." 

The idea of constructing the interpolation polynomial as a symbolic 

entity (.i.e., for other than Interpolatory purposes) can be found in the 

numerical analysis literature, specifically the method for computing the 

Newton's own comments on the Interpolation Problem and his solution are 
most revealing as to his own feeling of its merit [10, p. 45]; "To des­
cribe a geometrical curve which will pass through any given points... 
although the problem may seem intractable at first sight it is neverthe­
less the contrary. Perhaps it is indeed one of the prettiest problems 
that I can hope to solve." 

It seems strange that Waring's paper should have remained unacclaimed, 
especially in view of its clarity and prominent place of publication. 
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coefficients of the characteristic polynomial c(A) = |XI - A| by construct­

ing the interpolation polynomial passing through c(X ) for arbitrary 

distinct choices X,,,,.,A of the eigenvalue parameter A. 
1 n 

Application of interpolation methods for symbolic computation has 

been suggested by Takahasi and Ishibashi in [18, Sec. 4 ] , and anticipated 

by Collins in [5], An especially interesting application of exact interpo­

lation methods occurs in the fact (multiple-precision) multiplication scheme 

due to Toom and Cook (see [11, Sec, 4,3.3]), 

The Chinese Remainder Theorem has been presented in several places at 

various levels of abstraction (e.g. cf. [13j pp. 161-2, p. 165 Pr, 5]). 

Thus, the main result of Sec. 2 is not the Chinese Remainder Theorem per 

se but the proof presented there which explicitly establishes two Chinese 

Remainder Formulas (Lagrangian and Newtonian) of distinct computational 

character, and does so in a context sufficiently abstract to make evident 

the underlying algebraic nature of the Chinese Remainder Problem and 

methods of solution. 

Likewise, various Chinese Remainder and Interpolation schemes have 

been described (e.g. cf. [11; p. 254, pp. 428-30]). The main purpose of 

Sees. 3-5 was the systematic derivation and analysis of the naturally 

suggested algorithms, in contexts relevant to symbolic computation. 
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